Published in

arXiv, 2020

DOI: 10.48550/arxiv.2005.00080

Royal Society of Chemistry, Nanoscale, 18(12), p. 10127-10139, 2020

DOI: 10.1039/d0nr02461a

Links

Tools

Export citation

Search in Google Scholar

Electrical molecular switch addressed by chemical stimuli

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We demonstrate that the conductance switching of benzo-bis(imidazole) molecules upon protonation depends on the lateral functional groups. The protonated H-substituted molecule shows a higher conductance than the neutral one (Gpro>Gneu), while the opposite (Gneu>Gpro) is observed for a molecule laterally functionalized by amino-phenyl groups. These results are demonstrated at various scale lengths : self-assembled monolayer, tiny nanodot-molecule junction and single molecules. From ab-initio theoretical calculations, we conclude that for the H-substituted molecule, the result Gpro>Gneu is correctly explained by a reduction of the LUMO-HOMO gap, while for the amino-phenyl functionnalized molecule, the result Gneu>Gpro is consistent with a shift of HOMO, which reduces the density of states at the Fermi energy.