Published in

Cambridge University Press, British Journal of Nutrition, 2(124), p. 232-240, 2020

DOI: 10.1017/s0007114520001002

Links

Tools

Export citation

Search in Google Scholar

Viscous placebo and carbohydrate breakfasts similarly decrease appetite and increase resistance exercise performance compared with a control breakfast in trained males

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractGiven the common view that pre-exercise nutrition/breakfast is important for performance, the present study investigated whether breakfast influences resistance exercise performance via a physiological or psychological effect. Twenty-two resistance-trained, breakfast-consuming men completed three experimental trials, consuming water-only (WAT), or semi-solid breakfasts containing 0 g/kg (PLA) or 1·5 g/kg (CHO) maltodextrin. PLA and CHO meals contained xanthan gum and low-energy flavouring (approximately 122 kJ), and subjects were told both ‘contained energy’. At 2 h post-meal, subjects completed four sets of back squat and bench press to failure at 90 % ten repetition maximum. Blood samples were taken pre-meal, 45 min and 105 min post-meal to measure serum/plasma glucose, insulin, ghrelin, glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations. Subjective hunger/fullness was also measured. Total back squat repetitions were greater in CHO (44 (sd 10) repetitions) and PLA (43 (sd 10) repetitions) than WAT (38 (sd 10) repetitions; P < 0·001). Total bench press repetitions were similar between trials (WAT 37 (sd 7) repetitions; CHO 39 (sd 7) repetitions; PLA 38 (sd 7) repetitions; P = 0·130). Performance was similar between CHO and PLA trials. Hunger was suppressed and fullness increased similarly in PLA and CHO, relative to WAT (P < 0·001). During CHO, plasma glucose was elevated at 45 min (P < 0·05), whilst serum insulin was elevated (P < 0·05) and plasma ghrelin suppressed at 45 and 105 min (P < 0·05). These results suggest that breakfast/pre-exercise nutrition enhances resistance exercise performance via a psychological effect, although a potential mediating role of hunger cannot be discounted.