Published in

Royal Society of Chemistry, Chemical Society Reviews, 12(40), p. 5867, 2011

DOI: 10.1039/c1cs15067g

Links

Tools

Export citation

Search in Google Scholar

The application of DNA and RNA G-quadruplexes to therapeutic medicines.

Journal article published in 2011 by Gw Collie ORCID, Gn Parkinson
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The intriguing structural diversity in folded topologies available to guanine-rich nucleic acid repeat sequences have made four-stranded G-quadruplex structures the focus of both basic and applied research, from cancer biology and novel therapeutics through to nanoelectronics. Distributed widely in the human genome as targets for regulating gene expression and chromosomal maintenance, they offer unique avenues for future cancer drug development. In particular, the recent advances in chemical and structural biology have enabled the construction of bespoke selective DNA based aptamers to be used as novel therapeutic agents and access to detailed structural models for structure based drug discovery. In this critical review, we will explore the important underlying characteristics of G-quadruplexes that make them functional, stable, and predictable nanoscaffolds. We will review the current structural database of folding topologies, molecular interfaces and novel interaction surfaces, with a consideration to their future exploitation in drug discovery, molecular biology, supermolecular assembly and aptamer design. In recent years the number of potential applications for G-quadruplex motifs has rapidly grown, so in this review we aim to explore the many future challenges and highlight where possible successes may lie. We will highlight the similarities and differences between DNA and RNA folded G-quadruplexes in terms of stability, distribution, and exploitability as small molecule targets. Finally, we will provide a detailed review of basic G-quadruplex geometry, experimental tools used, and a critical evaluation of the application of high-resolution structural biology and its ability to provide meaningful and valid models for future applications (255 references).