Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Bioinformatics, 10(36), p. 3185-3191, 2020

DOI: 10.1093/bioinformatics/btaa119

Links

Tools

Export citation

Search in Google Scholar

Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Motivation Reverse vaccinology (RV) is a milestone in rational vaccine design, and machine learning (ML) has been applied to enhance the accuracy of RV prediction. However, ML-based RV still faces challenges in prediction accuracy and program accessibility. Results This study presents Vaxign-ML, a supervised ML classification to predict bacterial protective antigens (BPAgs). To identify the best ML method with optimized conditions, five ML methods were tested with biological and physiochemical features extracted from well-defined training data. Nested 5-fold cross-validation and leave-one-pathogen-out validation were used to ensure unbiased performance assessment and the capability to predict vaccine candidates against a new emerging pathogen. The best performing model (eXtreme Gradient Boosting) was compared to three publicly available programs (Vaxign, VaxiJen, and Antigenic), one SVM-based method, and one epitope-based method using a high-quality benchmark dataset. Vaxign-ML showed superior performance in predicting BPAgs. Vaxign-ML is hosted in a publicly accessible web server and a standalone version is also available. Availability and implementation Vaxign-ML website at http://www.violinet.org/vaxign/vaxign-ml, Docker standalone Vaxign-ML available at https://hub.docker.com/r/e4ong1031/vaxign-ml and source code is available at https://github.com/VIOLINet/Vaxign-ML-docker. Supplementary information Supplementary data are available at Bioinformatics online.