Published in

Canadian Science Publishing, Canadian Journal of Microbiology, 9(65), p. 691-702, 2019

DOI: 10.1139/cjm-2019-0100

Links

Tools

Export citation

Search in Google Scholar

CRISPR-Cas9 knockout ofqseBinduced asynchrony between motility and biofilm formation inEscherichia coli

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Generally, cell motility and biofilm formation are tightly regulated. The QseBC two-component system (TCS) serves as a bridge for bacterial signal transmission, in which the protein QseB acts as a response regulator bacterial motility, biofilm formation, and virulence. The mechanisms that govern the interaction between QseBC and their functions have been studied in general, but the regulatory role of QseB on bacterial motility and biofilm formation is unknown. In this study, the CRISPR-Cas9 system was used to construct the Escherichia coli MG1655ΔqseB strain (strain ΔqseB), and the effects of the qseB gene on changes in motility and biofilm formation in the wild type (WT) were determined. The motility assay results showed that the ΔqseB strain had higher (p < 0.05) motility than the WT strain. However, there was no difference in the formation of biofilm between the ΔqseB and WT strains. Real-time quantitative PCR illustrated that deletion of qseB in the WT strain downregulated expression of the type I pili gene fimA. Therefore, we might conclude that the ΔqseB induced the downregulation of fimA, which led to asynchrony between motility and biofilm formation in E. coli, providing new insight into the functional importance of QseB in regulating cell motility and biofilm formation.