Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Quaternary Research, 2(92), p. 408-415, 2019

DOI: 10.1017/qua.2019.13

Links

Tools

Export citation

Search in Google Scholar

Investigating (a)symmetry in a small mammal's response to warming and cooling events across western North America over the late Quaternary

Journal article published in 2019 by Julio L. Betancourt, Meghan A. Balk ORCID, Felisa A. Smith
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMany mammalian populations conform spatially and temporally to Bergmann's rule. This ecogeographic pattern is driven by selection for larger body masses by cooler temperatures and smaller ones by warming temperatures. However, it is unclear whether the response to warming or cooling temperatures is (a)symmetrical. Studies of the evolutionary record suggest that mammals evolve smaller body sizes more rapidly than larger ones, suggesting that it may be “easier” to adapt to warming climates than cooling ones. Here, we examine the potential asymmetrical response of mammals to past temperature fluctuations. We use the fossil midden record of the bushy-tailed woodrat, Neotoma cinerea, a well-studied animal that generally conforms to Bergmann's rule, to test the ability of populations to respond to warming versus cooling climate throughout its modern range in western North America over the late Quaternary. We quantified the response to temperature change, as characterized by the Greenland Ice Sheet Project 2 temperature record, using N. cinerea presence/absence and “darwins.” Our results show that populations within the modern range of N. cinerea show little difference between warming and cooling events. However, northern, peripheral populations are absent during older, cooler periods, possibly due to climate or taphonomy. Our study suggests adaptation in situ may be an underestimated response to future climate change.