Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biophysical Journal, 4(87), p. 2107-2115, 2004

DOI: 10.1529/biophysj.104.040311

Links

Tools

Export citation

Search in Google Scholar

Transmembrane Peptide-Induced Lipid Sorting and Mechanism of Lα-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl-sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar (Lalpha) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed Lalpha-to-inverse hexagonal (HII) peptide-induced phase transition.