Published in

MDPI, Animals, 6(9), p. 372, 2019

DOI: 10.3390/ani9060372

Links

Tools

Export citation

Search in Google Scholar

Food Preferences in Cats: Effect of Dietary Composition and Intrinsic Variables on Diet Selection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A ten-year database of food preference tests (n = 1021; period 2007−2017) was used to explore the feeding behavior of domestic cats. Principal component (PC) analysis and linear regression between food nutrients and preferences (for the most preferred diet of each test; Diet A) were performed. Intake and preference for Diet A were analyzed by intrinsic cats’ variables and climate season. The PC1 (calcium (Ca), phosphorus (P), and ash), PC2 (lipids and ether extract) and PC4 (crude fiber; CF) had borderline significance (p < 0.06; β = −1.42, β = −1.56, and β = 2.68, respectively). Ash and CF contents presented negative correlations with food preference (rho = −0.269, p = 0.031; rho = −0.338, p = 0.006, respectively), and Ca had borderline significance and negative correlation with food preference (rho = −0.241, p = 0.054). Body weight and sex influenced the intake of Diet A, being lower for females (β = 11.758; p = 0.014) and heaviest cats (β = −5.490; p < 0.001). However, only body weight affected food preferences, where the heaviest cats had greater preferences for Diet A. Hot season decreased food intake (β = −2,117; p = 0.032), mostly in females (rho = −3.537; p = 0.002). Males had greater preferences for Diet A during hot seasons (β = 10.216; p = 0.023) and females presented similar preferences throughout the year (p = 0.950). Mineral contents, body weight and sex affected food intake and preferences of cats under the influence of climate season, probably explained by adaptive changes in food detection.