Cambridge University Press, Journal of Agricultural Science, 9(11), p. 281, 2019
Full text: Unavailable
The usage of sewage sludge in agriculture can increase the levels of heavy metals in the soil, compromising their use as fertilizer. The objective of this study was to evaluate the contamination of soil and pineapple by heavy metals after the application of treated sewage sludge by different forms in three orders of soils under greenhouse conditions. The treatments, in a factorial scheme 7 × 3 were distributed in a randomized complete block design with three replications, corresponding to seven fertilization management: soil without fertilization, chemical fertilization, fertilization with composted sludge sewage, fertilization with vermicompost sewage sludge, fertilization with solarized sewage sludge, fertilization as sewage sludge dried in a Bruthus-Albrecht rotary sludge dryer and fertilization with limed sludge sewage, combined with three orders of soils: Cambisol, Nitisol and Acrisol. The Zn, Cu, Cr, Pb, Ba, Cd, Ni, As and Se contents were analyzed in the soil, in the leaf of greater length (D leaf) and in the fruit pulp of the pineapple. The Acrisol provided more favorable conditions to the increase in the availability and absorption of Pb and As by D leaf and fruit of the pineapple. Fertilization with composted, vermicompost and solarized sewage sludge provided high levels of Pb, As, Zn in leaf D and in the pineapple fruit, relating the interference of sludge stabilization process with the absorption of metals by pineapple fruits.