Published in

Cambridge University Press, Parasitology, 6(146), p. 740-745, 2019

DOI: 10.1017/s0031182018002202

Links

Tools

Export citation

Search in Google Scholar

Re-evaluation of merogony of a Cystoisospora ohioensis-like coccidian and its distinction from gametogony in the intestine of a naturally infected dog

Journal article published in 2019 by J. P. Dubey ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractFour species of Cystoisospora, C. canis, C. ohioensis, C. neorivolta and C. burrowsi are described from feces of dogs. Of these, the oocysts of C. canis are the largest and easily distinguished from the remaining three species. Oocysts of C. ohioensis, C. neorivolta and C. burrowsi are difficult to distinguish because of overlap in their sizes. However, based on endogenous developmental stages, C. ohioensis is distinct from C. neorivolta and C. burrowsi because its endogenous stages are confined to surface epithelium of intestine whereas endogenous stages of C. neorivolta and C. burrowsi are predominantly in the lamina propria. There are uncertainties regarding the endogenous stages of C. neorivolta and C. burrowsi and there is no way now to determine whether C. burrowsi and C. neorivolta are different parasites; therefore, these are referred as C. ohioensis-like organisms. Additionally, mode of division of asexual stages of coccidia of dogs is largely unknown and ultrastructural studies are lacking. In the present study, development of asexual and sexual stages of a C. ohioensis-like organism in a naturally infected dog is described by light microscopy and by transmission electron microscopy. Merozoites divided by endodyogeny/merogony. Meronts were crescent/merozoite-shaped and contained a maximum of eight nuclei. A distinctive feature of merozoites was the presence of many PAS-positive amylopectin granules that were absent or rare in immature microgamonts making it possible to distinguish them.