Published in

Royal Society of Chemistry, Lab on a Chip, 10(14), p. 1746-1752, 2014

DOI: 10.1039/c3lc51334c

Links

Tools

Export citation

Search in Google Scholar

A high-throughput device for size based separation of C. elegans developmental stages

Journal article published in 2014 by Xiaoni Ai, Weipeng Zhuo, Qionglin Liang, Patrick T. McGrath, Hang Lu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Caenorhabditis elegans is a widely used model organism to study development, aging and behavior. Many of these biological studies require staging a large number of worms to assay a synchronized population of animals. Conventional synchronization techniques such as manual picking, gravity stratification and chemical bleaching are labor-intensive and could perturb animals’ physiology. Thus, there is a need for a simple inexpensive technology to sort a mixed population of worms based on their developmental stages with minimal perturbation. Here we demonstrate a simple but accurate and high-throughput technique to sort based on animal size, which correlates well with developmental stages. The device consists of an array of geometrically optimized pillars that act as a sieve to allow worms of specific sizes to rapidly move through. With optimized chamber heights, pillar spacing and driving pressures, these binary separation devices are capable of independently separating a mixture of worms at two different stages at average efficiency of around 95%, and throughput of hundreds of worms per minute. In addition, when four devices are used sequentially, we demonstrate the ability to stratify a mixture of worms of all developmental stages with >85% overall efficiency.