Published in

Cambridge University Press, Journal of Plasma Physics, 02(83)

DOI: 10.1017/s0022377817000265

Links

Tools

Export citation

Search in Google Scholar

Plasma turbulence at ion scales: a comparison between particle in cell and Eulerian hybrid-kinetic approaches

Journal article published in 2017 by S. S. Cerri, L. Franci ORCID, F. Califano, S. Landi, P. Hellinger ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Kinetic-range turbulence in magnetized plasmas and, in particular, in the context of solar wind turbulence has been extensively investigated over the past decades via numerical simulations. Among others, one of the widely adopted reduced plasma models is the so-called hybrid-kinetic model, where the ions are fully kinetic and the electrons are treated as a neutralizing (inertial or massless) fluid. Within the same model, different numerical methods and/or approaches to turbulence development have been employed. In the present work, we present a comparison between two-dimensional hybrid-kinetic simulations of plasma turbulence obtained with two complementary approaches spanning approximately two decades in wavenumber – from the magnetohydrodynamics inertial range to scales well below the ion gyroradius – with a state-of-the-art accuracy. One approach employs hybrid particle-in-cell simulations of freely decaying Alfvénic turbulence, whereas the other consists of Eulerian hybrid Vlasov–Maxwell simulations of turbulence continuously driven with partially compressible large-scale fluctuations. Despite the completely different initialization and injection/drive at large scales, the same properties of turbulent fluctuations at $k_{\bot }\unicode[STIX]{x1D70C}_{i}\gtrsim 1$ are observed, where $k_{\bot }$ is the fluctuations’ wavenumber perpendicular to the background magnetic field and $\unicode[STIX]{x1D70C}_{i}$ is the ion Larmor radius. The system indeed self-consistently ‘reprocesses’ the turbulent fluctuations while they are cascading towards smaller and smaller scales, in a way which actually depends on the plasma beta parameter ($\unicode[STIX]{x1D6FD}$ is the ratio between the thermal and the magnetic pressures). Small-scale turbulence has been found to be mainly populated by kinetic Alfvén wave (KAW) fluctuations for $\unicode[STIX]{x1D6FD}⩾ 1$, whereas KAW fluctuations are only sub-dominant for low-$\unicode[STIX]{x1D6FD}$.