Published in

Springer Nature [academic journals on nature.com], European Journal of Human Genetics, 4(18), p. 509-509, 2010

DOI: 10.1038/ejhg.2009.208

Springer Nature [academic journals on nature.com], European Journal of Human Genetics, 4(18), p. 463-470, 2009

DOI: 10.1038/ejhg.2009.172

Links

Tools

Export citation

Search in Google Scholar

Drawing the history of the Hutterite population on a genetic landscape: inference from Y-chromosome and mtDNA genotypes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Although the North American Hutterites trace their origins to South Tyrol, no attempts have been made to examine the genetic migration history of the Hutterites before emigrating to the United States in the 1870s. To investigate this, we studied 9 microsatellite loci and 11 unique event polymorphism (UEP) markers on the Y-chromosome, the hypervariable region I (HVRI) of the mitochondrial DNA (mtDNA), as well as the complete mtDNA genome of Hutterite and South Tyrolean samples. Only 6 out of 14 Y-chromosome UEP+microsatellite haplotypes and 3 out of 11 mitochondrial haplotypes that were present in the Hutterites were also present in the South Tyrolean population. The phylogenetic relationships inferred from Y-chromosome and mtDNA databases show that the Hutterites have a unique genetic background related to a similar extent to central and eastern European populations. An admixture analysis indicates, however, a relatively high genetic contribution of central European populations to the Hutterite gene pool. These results are consistent with historical records on Hutterite migrations and demographic history. In addition, our data reveal similar numbers of Y and mitochondrial haplotypes in Hutterite male and female founders, respectively. The Hutterite male and female gene pools are similar with respect to genetic diversity and genetic distance measures and comparable with respect to their origins, suggesting a similar evolutionary history.