Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Journal of Fluid Mechanics, (842)

DOI: 10.1017/jfm.2018.196

Links

Tools

Export citation

Search in Google Scholar

Local available energetics of multicomponent compressible stratified fluids

Journal article published in 2018 by Rémi Tailleux ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We extend the local theory of available potential energy (APE) to a general multicomponent compressible stratified fluid, accounting for the effects of diabatic sinks and sources. As for simple compressible fluids, the total potential energy density of a fluid parcel is the sum of its available elastic energy and APE density. These respectively represent the adiabatic compression/expansion work needed to bring it from its reference pressure to its actual pressure and the work against buoyancy forces required to move it from its reference state position to its actual position. Our expression for the APE density is new and is derived using only elementary manipulations of the equations of motion; it is significantly simpler than existing published expressions, while also being more transparently linked to the relevant form of APE density for the Boussinesq and hydrostatic primitive equations. Our new framework is used to clarify the links between some aspects of the energetics of Boussinesq and real fluids, as well as to shed light on the physical basis underlying the choice of reference state(s) in local APE theory.