Published in

Royal Society of Chemistry, Faraday Discussions, (203), p. 389-406, 2017

DOI: 10.1039/c7fd00067g

Links

Tools

Export citation

Search in Google Scholar

Toward a reverse hierarchy of halogen bonding between bromine and iodine

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We compare here the halogen bond characteristics of bimolecular adducts involving eitherN-bromo- orN-iodosaccharin as strong halogen bond donors, with 4-picoline as a common XB acceptor. In the NBSac·Pic system, the bromine atom of NBSac is displaced toward the picoline, almost at a median position between the two nitrogen atoms, NSacand N′Pic, with NSac⋯Br and Br⋯N′Picdistances at 2.073(6) and 2.098(6) Å respectively. This extreme situation contrasts with the analogous iodine derivative, NISac·Pic, where the NSac–I and I⋯N′Picdistances amount to 2.223(4) and 2.301(4) Å respectively. Periodic DFT calculations, and molecular calculations of adducts (PBEPBE-D2 aug-cc-pVTZ) either at the experimental frozen geometry or with optimization of the halogen position, indicate a more important degree of covalency (i.e.shared-shell character) in the adduct formed with the bromine atom. A stronger charge transfer to the picoline is also found for the bromine (+0.27 |e|) than for the iodine (+0.18 |e|) system. This inversion of halogen bond strength between I and Br finds its origin in the strong covalent character of the interaction in these adducts, in line with the strength of covalent N–Br and N–I bonds. Detailed characterization of the critical points (CPs) of theL(r) = −∇2ρ(r) function along bonding directions has permitted the adducts to be distinguished and they can be respectively described as “neutral” NISac/Pic and “intermediate” NSac/Br/Pic, the latter with Br being close to formal equivalent NSac⋯Br and Br⋯N′Picinteractions but still more associated to the XB donor than to the picoline, as indicated by the topological and energetic properties of theρ(r) function at the bond critical points (BCPs).