Published in

Royal Society of Chemistry, Nanoscale, 14(10), p. 6629-6638

DOI: 10.1039/c8nr00798e

Links

Tools

Export citation

Search in Google Scholar

A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The preparation of ordered metal organic frameworks (MOFs) will be a critical process for MOF-based nanoelectrodes in the future. In this work, we develop a novel approach to fabricating a type of MOF electrode based on flexible amino-functionalized graphene paper modified with 2D oriented assembly of Cu3(btc)2 nanocubes via facile interfacial synthesis and an effective dip-coating method. One interesting finding is that 2D arrays of Cu3(btc)2 nanocubes at oil–water interfaces can be transferred on amino-functionalized graphene paper, leading to a densely packed monolayer of Cu3(btc)2 nanocubes with a uniform size loaded on the paper electrode. The electrode demonstrates a variety of excellent sensing performances toward sweat lactate and glucose and has been applied in a non-enzymatic electrochemical biosensing platform for the first time. The modular nature of this approach to assembling MOF nanocrystals will provide new insight into the design of MOF-based electrodes for a wide range of applications in biosensing instruments, wearable electronics, and lab-on-a-chip devices.