Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Clay Minerals, 01(53), p. 79-89

DOI: 10.1180/clm.2018.6

Links

Tools

Export citation

Search in Google Scholar

Layered double hydroxides: matrices for storage and source of boron for plant growth

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTThe increase of the absorption efficiency of boron (B) by plants is essential for increasing crop productivity. The intercalation of B in MgAl layered double hydroxides (LDHs) is an alternative to evaluating how these materials can provide B to plants. In this work, a MgAl LDH intercalated with borate ions (Mg2Al-B-LDH) was synthesized by the constant pH coprecipitation method, and the material produced was evaluated as a matrix for storage and as a source of B for plants. The Mg2Al-B-LDH was characterized by XRD, ATR-FTIR, TGA-DTA, specific surface area, pore size and volume, and SEM. A bioassay was performed to verify the supply of B to plants from the two sources in the forms of H3BO3 and of Mg2Al-B-LDH to sunflower plants grown in pots. The LDH basal spacing value of 12.0 Å is characteristic of intercalation of tetraborate octahydrate ions [B4O5(OH)42−]·8H2O between the layers. There was an increase in the dry matter (DM) and B content of the plants relative to those treatments where no B was added. The lack of statistical difference for plant yield between the two sources of B suggests a lack of stability of the Mg2Al-B-LDH structure under the acidic condition of the soil.