Giovannino Silvestri
www.medschool.umaryland.edu
0000-0001-5911-6997
Institute of Human Virology
30 papers found
Refreshing results…
FIGURE 4 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
FIGURE 7 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
FIGURE 1 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
Supplementary Figure S2 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
Supplementary Figure S1 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
FIGURE 3 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
FIGURE 2 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
Data from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
FIGURE 5 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
Supplementary Table S1 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
FIGURE 6 from Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation
Comparison of SARS-CoV-2 Receptors Expression in Primary Endothelial Cells and Retinoic Acid-Differentiated Human Neuronal Cells
A word of heartfelt thanks to our reviewers
PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19
Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on MIR300 Antiproliferative and PP2A-Activating Functions
A 14q32.31 Genomic-Imprinted DLK1-DIO3 microrna promotes Leukemogenesis By Inducing Stem Cell Quiescence and Inhibiting NK Cell Anti-Cancer Immunity
The 14q32.31 DLK1-DIO3 MIR300 tumor suppressor promotes leukemogenesis by inducing cancer stem cell quiescence and inhibiting NK cell anti-cancer immunity
PC-12 Bone marrow microenvironment-induced miR-300 expression impairs natural killer cell proliferation and anti-tumor activity
BCR-ABL1 mediated miR-150 downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia
Missing publications? Search for publications with a matching author name.