Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-15850-3

Links

Tools

Export citation

Search in Google Scholar

Magnetic Bragg dip and Bragg edge in neutron transmission spectra of typical spin superstructures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNeutron diffractometry has been a critical tool for clarifying spin structures. In contrast, little attention has been paid to neutron transmission spectroscopy, even though they are different types of the same phenomenon. Soon, it will be possible to measure the wavelength dependence of transmissions easily using accelerator-driven neutron facilities. Therefore, we have started studying the potential of spectroscopy in magnetism, and in this paper, we report the first observation of a magnetic Bragg dip and Bragg edge in the neutron transmission spectra of a typical spin superstructure; clear antiferromagnetic Bragg dips and Bragg edges are found for a single crystal and powder of nickel oxide, respectively. The obtained results show that transmission spectroscopy is a promising tool for measurements under multi-extreme conditions and for the precise analyses of spin structures, not only in MW-class pulsed spallation source facilities but also in compact neutron source facilities.