Published in

European Geosciences Union, Biogeosciences, 11(15), p. 3277-3291, 2018

DOI: 10.5194/bg-15-3277-2018

European Geosciences Union, Biogeosciences Discussions, p. 1-18

DOI: 10.5194/bg-2017-431

Links

Tools

Export citation

Search in Google Scholar

Stomatal control of leaf fluxes of carbonyl sulfide and CO<sub>2</sub> in a <i>Typha</i> freshwater marsh

Journal article published in 2018 by Wu Sun ORCID, Kadmiel Maseyk ORCID, Céline Lett, Ulli Seibt
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Carbonyl sulfide (COS) is an emerging tracer to constrain land photosynthesis at canopy to global scales, because leaf COS and CO2 uptake processes are linked through stomatal diffusion. The COS tracer approach requires knowledge of the concentration normalized ratio of COS uptake to photosynthesis, commonly known as the leaf relative uptake (LRU). LRU is known to increase under low light, but the environmental controls over LRU variability in the field are poorly understood due to scant leaf scale observations. Here we present the first direct observations of LRU responses to environmental variables in the field. We measured leaf COS and CO2 fluxes at a freshwater marsh in summer 2013. Daytime leaf COS and CO2 uptake showed similar peaks in the mid-morning and late afternoon separated by a prolonged midday depression, highlighting the common stomatal control on diffusion. At night, in contrast to CO2, COS uptake continued, indicating partially open stomata. LRU ratios showed a clear relationship with photosynthetically active radiation (PAR), converging to 1.0 at high PAR, while increasing sharply at low PAR. Daytime integrated LRU (calculated from daytime mean COS and CO2 uptake) ranged from 1 to 1.5, with a mean of 1.2 across the campaign, significantly lower than the previously reported laboratory mean value (∼ 1.6). Our results indicate two major determinants of LRU – light and vapor deficit. Light is the primary driver of LRU because CO2 assimilation capacity increases with light, while COS consumption capacity does not. Superimposed upon the light response is a secondary effect that high vapor deficit further reduces LRU, causing LRU minima to occur in the afternoon, not at noon. The partial stomatal closure induced by high vapor deficit suppresses COS uptake more strongly than CO2 uptake because stomatal resistance is a more dominant component in the total resistance of COS. Using stomatal conductance estimates, we show that LRU variability can be explained in terms of different patterns of stomatal vs. internal limitations on COS and CO2 uptake. Our findings illustrate the stomata-driven coupling of COS and CO2 uptake during the most photosynthetically active period in the field and provide an in situ characterization of LRU – a key parameter required for the use of COS as a photosynthetic tracer.