Published in

Springer, Neural Computing and Applications, 20(32), p. 15761-15769, 2018

DOI: 10.1007/s00521-018-3494-1

Links

Tools

Export citation

Search in Google Scholar

On the analysis of speech and disfluencies for automatic detection of Mild Cognitive Impairment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Alzheimer’s disease is characterized by a progressive and irreversible cognitive deterioration. In a previous stage, the so-called Mild Cognitive Impairment or cognitive loss appears. Nevertheless, this previous stage does not seem sufficiently severe to interfere in independent abilities of daily life, so it is usually diagnosed inappropriately. Thus, its detection is a crucial challenge to be addressed by medical specialists. This paper presents a novel proposal for such early diagnosis based on automatic analysis of speech and disfluencies, and Deep Learning methodologies. The proposed tools could be useful for supporting Mild Cognitive Impairment diagnosis. The Deep Learning approach includes Convolutional Neural Networks and nonlinear multifeature modeling. Additionally, an automatic hybrid methodology is used in order to select the most relevant features by means of nonparametric Mann–Whitney U test and Support Vector Machine Attribute evaluation.