Published in

American Physiological Society, Journal of Applied Physiology, 2(124), p. 312-320

DOI: 10.1152/japplphysiol.00697.2017

Links

Tools

Export citation

Search in Google Scholar

Effects of endothelin-related gene polymorphisms and aerobic exercise habit on age-related arterial stiffening: a 10-yr longitudinal study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Increased arterial stiffness has emerged as a strong predictor of future cardiovascular events and all-cause mortality. The aim of this study was to elucidate influences of endothelin (ET)-related genetic polymorphisms and regular physical activity on age-related arterial stiffening through a 10-yr longitudinal study. A decadal change in brachial-ankle pulse wave velocity (baPWV), an index of arterial stiffness, was evaluated retrospectively among 92 volunteers (63 ± 14 yr, 51 men). The targeted single-nucleotide polymorphisms were ET-A receptor SNP rs5333 (ET-A) and ET-B receptor SNP rs5351 (ET-B). Subjects with either ET-A TC or CC genotypes exhibited significantly greater increases in baPWV (+15.3 ± 11.7 and +16.6 ± 15.7%/dec, respectively) than ET-A TT genotype holders (+9.2 ± 9.0%/dec), whereas subjects with the ET-B GG genotype showed a significantly greater increase in baPWV (+17.7 ± 14.1%/dec) than other ET-B genotype holders (AA: +9.5 ± 10.0%/dec; AG: +11.2 ± 9.6%/dec). The combination of these ET-related genetic risks was associated with a 2.4 times greater decadal increase in baPWV compared with no genetic risk (+8.1 ± 8.4 vs. 19.5 ± 16.0%/dec). In contrast, individuals engaging in >15 METs·h/wk of aerobic exercise showed substantially smaller increases in baPWV (+5.0 ± 9.7%/dec) compared with their physically inactive peers (approximately +13%/dec). These differences remained significant after adjusting for confounding factors, including baseline baPWV and ET-related genotype risk. Our current longitudinal study found that ET-related gene polymorphisms contribute to diverse age-related changes in arterial stiffness, and that regular sufficient aerobic exercise attenuates the age-related arterial stiffening independently of ET-related gene polymorphisms. NEW & NOTEWORTHY This 10-yr longitudinal study suggests that endothelin-related gene polymorphisms contribute to divergent increases in arterial stiffness with advancing age, whereas regular sufficient aerobic exercise attenuates age-related arterial stiffening independently of ET-related gene polymorphisms. This notion partly supports prevailing evidence that regular aerobic exercise contributes to a lower incidence of cardiovascular disease.