Published in

Wiley, Small, 14(7), p. 2109-2119, 2011

DOI: 10.1002/smll.201100744

Links

Tools

Export citation

Search in Google Scholar

Polymersome-loaded capsules for controlled release of DNA

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The formation of a novel drug-delivery carrier for the controlled release of plasmid DNA that comprises layer-by-layer polymer capsules subcompartmentalized with pH-sensitive nanometer-sized polymersomes is reported. The amphiphilic diblock copolymer poly(oligoethylene glycol methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) forms polymersomes at physiological pH, but transitions to unimeric polymer chains upon acidification to cellular endocytic pH. These polymersomes can thus release an encapsulated payload in response to a change in pH from physiological to endocytic conditions. Multicomponent layer-by-layer capsules are formed by exploiting the ability of tannic acid to act as an efficient hydrogen-bond donor for both the polymersomes and poly(N-vinyl pyrrolidone) at physiological pH. These capsules show release of a plasmid DNA payload encapsulated within the polymersome subcompartments in response to changes in pH between physiological and endocytic conditions.