Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S331(12), p. 69-74

DOI: 10.1017/s1743921317005300

Links

Tools

Export citation

Search in Google Scholar

Constraints on environs around SN 2011fe and SN 2014J from radio modeling and observations

Journal article published in 2017 by Esha Kundu ORCID, Peter Lundqvist, Miguel A. Pérez-Torres
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe radio non-detection of two Type Ia supernovae (SNe) SN 2011fe and SN 2014J has been modeled considering synchrotron radiation from shock accelerated electrons in the SN shock fronts. With 10% each of the bulk kinetic energy in electric and magnetic fields, a very low density of the medium around both the SNe has been estimated from the null detection of radio emission, around 1 and 4 years after the explosion of SNe 2014J and 2011fe, respectively. Keeping the fraction of energy in electrons fixed at 10%, a medium with particle density ~ 1cm−3 is found when 1% of the post shock energy is in magnetic fields. In case of a wind medium, the former predicts the mass loss rate Ṁ to be <10−9M yr−1, and the latter gives an upper limit ~10−9M yr−1, for wind velocity of 100 kms−1, for both the SNe. The tenuous media obtained from this study favor the double degenerate as well as a spin up/down model for both SNe 2011fe and 2014J.