Published in

Cold Spring Harbor Laboratory Press, Genome Research, 11(27), p. 1783-1794, 2017

DOI: 10.1101/gr.223313.117

Links

Tools

Export citation

Search in Google Scholar

Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The stochastic dynamics and regulatory mechanisms that govern differentiation of individual human neural precursor cells (NPC) into mature neurons are currently not fully understood. Here, we used single-cell RNA-sequencing (scRNA-seq) of developing neurons to dissect/identify NPC subtypes and critical developmental stages of alternative lineage specifications. This study comprises an unsupervised, high-resolution strategy for identifying cell developmental bifurcations, tracking the stochastic transcript kinetics of the subpopulations, elucidating regulatory networks, and finding key regulators. Our data revealed the bifurcation and developmental tracks of the two NPC subpopulations, and we captured an early (24 h) transition phase that leads to alternative neuronal specifications. The consequent up-regulation and down-regulation of stage- and subpopulation-specific gene groups during the course of maturation revealed biological insights with regard to key regulatory transcription factors and lincRNAs that control cellular programs in the identified neuronal subpopulations.