Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-13328-w

Links

Tools

Export citation

Search in Google Scholar

Self-assembly of a parallelogram black phosphorus ribbon into a nanotube

Journal article published in 2017 by Jiao Shi, Kun Cai, Ling-Nan Liu, Qing-Hua Qin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA nanotube from single-layer black phosphorus (BP) has never been discovered in experiments. The present study proposed a method for the fabrication of a BP nanotube (BPNT) from a parallelogram nanoribbon self-assembled on a carbon nanotube (CNT). The nanoribbon has a pair of opposite sides along the third principal direction. According to the numerical simulation via molecular dynamics approach, we discover that a wider BP nanoribbon can form into a series of chiral nanotube by self-assembly upon CNTs with different radii. The radius of a BPNT from the same ribbon has a wide range, and depends on both geometry of the ribbon and the CNT. One can obtain a BPNT with the specified radius by placing the ribbon nearby a given CNT. The method provides a clue for potential fabrication of BPNTs.