Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, International Journal for Parasitology, 13(39), p. 1441-1453, 2009

DOI: 10.1016/j.ijpara.2009.05.011

Links

Tools

Export citation

Search in Google Scholar

Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes

Journal article published in 2009 by Binny M. Mony, Monika Mehta ORCID, Gotam K. Jarori, Shobhona Sharma
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK β and α subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene β and α regions were cloned and expressed as His 6 - and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9β possessed catalytic activity. Monoclonal antibodies against the recombinant β protein confirmed that the PfPFK9 protein has β and α domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.