Published in

American Institute of Physics, Applied Physics Letters, 12(111), p. 123502

DOI: 10.1063/1.5003616

Links

Tools

Export citation

Search in Google Scholar

Perfecting the Al2O3/In0.53Ga0.47As interfacial electronic structure in pushing metal-oxide-semiconductor field-effect-transistor device limits using in-situ atomic-layer-deposition

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We performed interfacial electric and electronic studies of both in-situ and ex-situ atomic-layer deposited (ALD) Al2O3 films on InGaAs. Self-aligned inversion-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) with a 1 μm gate length (Lg) from the in-situ sample have extrinsic drain currents (Id) of 1.8 mA/μm, transconductances (Gm) of 0.98 mS/μm, and an effective mobility (μeff) of 1250 cm2/V s. MOSFETs that employ ex-situ ALD-Al2O3 have an Id of 0.56 mA/μm, Gm of 0.28 mS/μm, and μeff of 410 cm2/V s. Synchrotron radiation photoemission reveals no AsOx residue at the Al2O3/InGaAs interface using the in-situ approach, whereas some AsOx residue is detected using the ex-situ method.