Published in

American Institute of Physics, Applied Physics Letters, 11(111), p. 111102

DOI: 10.1063/1.4986811

Links

Tools

Export citation

Search in Google Scholar

Torsional frequency mixing and sensing in optomechanical resonators

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In this letter, a torsional optomechanical resonator for torque sensing and torsional mechanical frequency mixing is experimentally demonstrated. The torsional mechanical resonator is embedded into a split optical racetrack resonator, which provides high sensitivity in measuring torsional mechanical motion. Using this high sensitivity, torsional mechanical frequency mixing is observed without regenerative mechanical motion. The displacement noise floor of the torsional mechanical resonator is 50 fm/Hz0.5, which demonstrates a resonant torque sensitivity of 3.58 × 10−21 N m/Hz0.5. This demonstration will benefit potential applications for on-chip RF signal modulation using optical mechanical resonators.