Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-11907-5

Links

Tools

Export citation

Search in Google Scholar

Function Coupling Mechanism of PhuS and HemO in Heme Degradation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMost bacteria possess only one heme-degrading enzyme for obtaining iron, however few bacteria such as Pseudomonas aeruginosa express two, namely PhuS and HemO. While HemO is a well-known heme oxygenase, previously we discovered that PhuS also possesses heme degradation activity and generates verdoheme, an intermediate of heme breakdown. To understand the coexistence of these two enzymes, using the DFT calculation we reveal that PhuS effectively enhances heme degradation through its participation in heme hydroxylation, the rate limiting reaction. Heme is converted to verdoheme in this reaction and the energy barrier for PhuS is substantially lower than for HemO. Thus, HemO is mainly involved in the ring opening reaction which converts verdoheme to biliverdin and free iron. Our kinetics experiments show that, in the presence of both PhuS and HemO, complete degradation of heme to biliverdin is enhanced. We further show that PhuS is more active than HemO using heme as a substrate and generates more CO. Combined experimental and theoretical results directly identify function coupling of this two-enzyme system, resulting in more efficient heme breakdown and utilization.