Published in

CSIRO Publishing, Animal Production Science, 11(57), p. 2280, 2017

DOI: 10.1071/an17324

Links

Tools

Export citation

Search in Google Scholar

Utilising mobilisation of body reserves to improve the management of phosphorus nutrition of breeder cows

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphorus (P) deficiency is a major constraint to the productivity of breeder herds grazing low-P rangelands due to adverse effects on growth and fertility. However, P supplementation during the wet season, when additional dietary P is most needed, is often difficult due to practical constraints. Body P reserves in breeders can be mobilised and alleviate dietary P deficiency within an annual cycle. Approaches to estimate bone P reserves and net mobilisation or replenishment of P from the analysis of rib and hip (tuber coxae) biopsies are discussed. In at least some circumstances, breeder cows grazing P-deficient pastures mobilise bone P to alleviate the effects of diet P deficiency. Recent experiments with breeders have investigated mobilisation of body P to alleviate the adverse effects of dietary P deficiency during pregnancy and early lactation, and subsequent replenishment of body P reserves. Both mature cows and first-calf cows (FCC) calving in a high P status and fed severely P-deficient diets during lactation were able to mobilise sufficient body P reserves to provide milk for moderate calf growth (viz. 0.6–0.8 kg liveweight (LW)/day for 3 months), but this was associated with rapid cow-LW loss and markedly decreased bone P content. First-calf cows appear to have lesser capacity than mature cows to mobilise body P. FCC fed P-adequate diets during late pregnancy maintained high voluntary intakes and had higher LW and bone P reserves at calving. When fed a P-deficient diet during early lactation, these greater bone P reserves were utilised. Bone P reserves can be replenished by P-adequate diets fed post-weaning. Breeder management that relies more on mobilising body P reserves when P demands are high and on replacing these body P reserves when P demands are lower offers an opportunity to alleviate the effects of dietary P deficiencies during the early wet season in situations where P supplementation is not possible.