Published in

American Astronomical Society, Astrophysical Journal, 1(763), p. 67, 2013

DOI: 10.1088/0004-637x/763/1/67

Links

Tools

Export citation

Search in Google Scholar

MOA-2010-BLG-073L : An M-Dwarf with a Substellar Companion at the Planet/Brown Dwarf Boundary

Journal article published in 2013 by L. Andrade de Almeida, R.~A A. Street, J.-Y. Choi, Y. Tsapras, C. Han, K. Furusawa, M. Hundertmark, A. Gould, T. Sumi, I.~A A. Bond, D. Wouters, R. Zellem, A. Udalski, RoboNet Collaboration, Collaboration The RoboNet and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V - I)[SUB] S, 0[/SUB], is 1.221 ± 0.051 mag, and from our lens model we derive a source radius of 14.7 ± 1.3 R [SUB]&sun;[/SUB], suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 ± 0.0006. The Einstein crossing time of the event, t [SUB]E[/SUB] = 44.3 ± 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, D[SUB]L[/SUB] = 2.8 ± 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M [SUB] L, 1[/SUB] = 0.16 ± 0.03 M [SUB]&sun;[/SUB], while the companion has M [SUB] L, 2[/SUB] = 11.0 ± 2.0 M [SUB]J[/SUB], putting it in the boundary zone between planets and brown dwarfs.