Published in

Elsevier Masson, Analytical Biochemistry, 1(408), p. 5-11

DOI: 10.1016/j.ab.2010.08.034

Links

Tools

Export citation

Search in Google Scholar

A Magnetic Bead-Based Protein Kinase Assay with Dual Detection Techniques

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel magnetic bead-based protein kinase assay was developed using MALDI-TOF mass spectrometry (MALDI-TOF MS) and immuno-chemifluorescence as two independent detection techniques. Abltide substrate was immobilized onto magnetic beads via non-covalent biotin-streptavidin interactions. This non-covalent immobilization strategy facilitated peptide release and allowed MALDI-TOF MS analysis of substrate phosphorylation. The use of magnetic beads provided rapid sample handling and allowed secondary analysis by immuno-chemifluorescence to determine the degree of substrate phosphorylation. This dual detection technique was used to evaluate the inhibition of c-Abl kinase by imatinib and dasatinib. For each inhibitor, IC50 (half-maximal inhibitory concentration) values determined by these two different detection methods were consistent and close to values reported in the literature. The high-throughput potential of this new approach to kinase assays was preliminarily demonstrated by screening a chemical library consisting of 31 compounds against c-Abl kinase using a 96-well plate. In this proof-of-principle experiment, both MALDI-TOF MS and immuno-chemifluorescence were able to compare inhibitor potencies with consistent values. Dual detection may significantly enhance the reliability of chemical library screening and identify false positives and negatives. Formatted for 96-well plates and with high-throughput potential, this dual detection kinase assay may provide a rapid, reliable and inexpensive route to the discovery of small molecule drug leads.