Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Biochemical Journal, 2(345), p. 321-334, 2000

DOI: 10.1042/bj3450321

Portland Press, Biochemical Journal, 2(345), p. 321

DOI: 10.1042/0264-6021:3450321

Links

Tools

Export citation

Search in Google Scholar

Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation.

Journal article published in 2000 by Jana Wolf ORCID, Reinhart Heinrich
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

On the basis of a detailed model of yeast glycolysis, the effect of intercellular dynamics is analysed theoretically. The model includes the main steps of anaerobic glycolysis, and the production of ethanol and glycerol. Transmembrane diffusion of acetaldehyde is included, since it has been hypothesized that this substance mediates the interaction. Depending on the kinetic parameter, the single-cell model shows both stationary and oscillatory behaviour. This agrees with experimental data with respect to metabolite concentrations and phase shifts. The inclusion of intercellular coupling leads to a variety of dynamical modes, such as synchronous oscillations, and different kinds of asynchronous behavior. These oscillations can co-exist, leading to bi- and tri-rhythmicity. The corresponding parameter regions have been identified by a bifurcation analysis. The oscillatory dynamics of synchronized cell populations are investigated by calculating the phase responses to acetaldehyde pulses. Simulations are performed with respect to the synchronization of two subpopulations that are oscillating out of phase before mixing. The effect of the various process on synchronization is characterized quantitatively. While continuous exchange of acetaldehyde might synchronize the oscillations for appropriate sets of parameter values, the calculated synchronization time is longer than that observed experimentally. It is concluded either that addition to the transmembrane exchange of acetaldehyde, other processes may contribute to intercellular coupling, or that intracellular regulator feedback plays a role in the acceleration of the synchronization. for appropriate sets of parameter values, the calculated synchronization time is longer than that observed experimentally. It is concluded either that addition to the transmembrane exchange of acetaldehyde, other processes may contribute to intercellular coupling, or that intracellular regulator feedback plays a role in the acceleration of the synchronization.