Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-05318-9

Links

Tools

Export citation

Search in Google Scholar

Dome-like behaviour at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm

Journal article published in 2017 by C. Ferlito, V. Bruno, G. Salerno ORCID, T. Caltabiano ORCID, D. Scandura, M. Mattia, M. Coltorti
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOn the 28 December 2014, a violent and short paroxysmal eruption occurred at the South East Crater (SEC) of Mount Etna that led to the formation of huge niches on the SW and NE flanks of the SEC edifice from which a volume of ~3 × 106 m3 of lava was erupted. Two basaltic lava flows discharged at a rate of ~370 m3/s, reaching a maximum distance of ~5 km. The seismicity during the event was scarce and the eruption was not preceded by any notable ground deformation, which instead was dramatic during and immediately after the event. The SO2 flux associated with the eruption was relatively low and even decreased few days before. Observations suggest that the paroxysm was not related to the ascent of volatile-rich fresh magma from a deep reservoir (dyke intrusion), but instead to a collapse of a portion of SEC, similar to what happens on exogenous andesitic domes. The sudden and fast discharge eventually triggered a depressurization in the shallow volcano plumbing system that drew up fresh magma from depth. Integration of data and observations has allowed to formulate a novel interpretation of mechanism leading volcanic activity at Mt. Etna and on basaltic volcanoes worldwide.