Dissemin is shutting down on January 1st, 2025

Published in

Multimed Inc.; 1999, Peritoneal Dialysis International, 4(37), p. 375-383, 2017

DOI: 10.3747/pdi.2016.00228

Links

Tools

Export citation

Search in Google Scholar

The Potential Cardiovascular Benefits of Low-Glucose Degradation Product, Biocompatible Peritoneal Dialysis Fluids: A Review of the Literature

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Cardiovascular mortality in the end-stage renal disease (ESRD) population remains the leading cause of death. Targeting traditional cardiovascular risk factors has proven unsuccessful in this patient population, and therefore attention has turned to risk factors related to chronic kidney disease (CKD). The toxicity of high-glucose peritoneal dialysis (PD) solutions has been well documented. The breakdown of glucose into glucose degradation products (GDP) and advanced glycation end-products (AGE) has the ability to alter cell viability and cause premature apoptosis and is strongly correlated with interstitial fibrosis and microvascular sclerosis. Biocompatible solutions have been introduced to combat the hostile milieu to which PD patients are exposed.Given the considerable cardiovascular burden for PD patients, little is known about the cardiovascular impact the new biocompatible solutions may have. This review analyzes the existing literature regarding the mechanisms through which low-GDP solutions may modulate cardiovascular risk. Interventions using low-GDP solutions have provided encouraging changes in structural cardiovascular measures such as left ventricular mass (LVM), although metabolic changes from reduced GDP and AGE exposure yield inconclusive results on vascular remodelling. It is thought that the local effects of reduced glucose exposure may improve membrane integrity and therefore fluid status. Further research in the form of a robust randomized controlled trial should be carried out to assess the true extent of the cardiovascular benefits these biocompatible solutions may hold.