Published in

Elsevier, Journal of Molecular Biology, 2(378), p. 468-480, 2008

DOI: 10.1016/j.jmb.2008.02.018

Links

Tools

Export citation

Search in Google Scholar

Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: Siphoviruses with triplex-forming sequences and the longest known tails

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The genomes of two closely related lytic Thermus thermophilus siphoviruses with exceptionally long (~800 nm) tails, bacteriophages P23-45 and P74-26, were completely sequenced. The P23-45 genome consists of 84,201 bp with 117 putative ORFs (Open Reading Frames), and the P74-26 genome has 83,319 bp and 116 putative ORFs. The two genomes are 92% identical with 113 ORFs shared. Only 25% of phage gene product functions can be predicted from similarities to proteins and protein domains with known functions. The structural genes of P23-45, most of which have no similarity to sequences from public databases, were identified by mass-spectrometric analysis of virions. An unusual feature of the P23-45 and P74-26 genomes is the presence, in their largest intergenic regions, of long polypurine-polypyrimidine (R-Y) sequences with mirror repeat symmetry. Such sequences, abundant in eukaryotic genomes but rare in prokaryotes, are known to form stable triple helices that block replication and transcription and induce genetic instability. Comparative analysis of the two phage genomes shows that the area around the triplex-forming elements is enriched in mutational variations. In vitro, phage R-Y sequences form triplexes and block DNA synthesis by Taq DNA polymerase in orientation-dependent manner, suggesting that they may play a regulatory role during P23-45 and P74-26 development.