Published in

The Royal Society, Philosophical Transactions of the Royal Society B: Biological Sciences, 1484(362), p. 1445-1457, 2007

DOI: 10.1098/rstb.2007.2127

Links

Tools

Export citation

Search in Google Scholar

Valvular endothelial cells and the mechanoregulation of valvular pathology

Journal article published in 2007 by Jonathan T. Butcher ORCID, Robert M. Nerem
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endothelial cells are critical mediators of haemodynamic forces and as such are important foci for initiation of vascular pathology. Valvular leaflets are also lined with endothelial cells, though a similar role in mechanosensing has not been demonstrated. Recent evidence has shown that valvular endothelial cells respond morphologically to shear stress, and several studies have implicated valvular endothelial dysfunction in the pathogenesis of disease. This review seeks to combine what is known about vascular and valvular haemodynamics, endothelial response to mechanical stimuli and the pathogenesis of valvular diseases to form a hypothesis as to how mechanical stimuli can initiate valvular endothelial dysfunction and disease progression. From this analysis, it appears that inflow surface-related bacterial/thrombotic vegetative endocarditis is a high shear-driven endothelial denudation phenomenon, while the outflow surface with its related calcific/atherosclerotic degeneration is a low/oscillatory shear-driven endothelial activation phenomenon. Further understanding of these mechanisms may help lead to earlier diagnostic tools and therapeutic strategies.