Published in

Wiley, The Journal of Physiology, 1(352), p. 625-635, 1984

DOI: 10.1113/jphysiol.1984.sp015313

Links

Tools

Export citation

Search in Google Scholar

Oscillatory hyperpolarizations and resting membrane potentials of mouse fibroblast and macrophage cell lines.

Journal article published in 1984 by C. Ince, P. C. J. Leijh, Leijh Pc, J. Meijer, E. Van Bavel ORCID, D. L. Ypey, Ypey Dl
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

L cells (a mouse fibroblast cell line) and macrophages have been reported to exhibit slow oscillatory hyperpolarizations and relatively low membrane potentials, when measured with glass micro-electrodes. This paper describes the role of micro-electrode-induced leakage in these oscillations for L cells and a mouse macrophage cell line (P388D1). Both L cells and macrophages showed fast negative-going peak-shaped potential transients upon micro-electrode entry. This shows that the micro-electrode introduces a leakage conductance across the membrane. The peak values of these fast transients were less negative for L cells (-17 mV) than for macrophages (-39 mV), although their sustained resting membrane potentials were about equal (-13 mV). This indicates that the pre-impaled membrane potential of macrophages is more negative than that of L cells. Ionophoretic injection of Ca2+ into the P388D1 macrophages showed the existence of a Ca2+ -dependent hyperpolarizing conductance presumed to be involved in the oscillatory hyperpolarizations of L cells and macrophages. Cells increased in size by X-ray irradiation to reduce membrane input resistances were still found to be susceptible to micro-electrode-induced leakage. Impalement transients upon entry of a second electrode during a hyperpolarization evoked by a first electrode, were often step-shaped instead of peak-shaped due to the high membrane conductance associated with hyperpolarization. Since peak-shaped impalement transients were always seen with the first impalement both in oscillating and non-oscillating cells, oscillatory hyperpolarizations cannot be regarded as spontaneously occurring in the unperturbed cells but are induced by micro-electrode penetration. Since the hyperpolarizing response can be evoked by ionophoretic injection of Ca2+, and oscillatory as well as single hyperpolarizing responses are absent in a Ca2+ -free medium, it is concluded that the Ca2+ needed intracellularly to activate the hyperpolarizing responses enters the cell via the leakage pathway introduced by the measuring electrode.