Published in

Wiley, Human Mutation: Variation, Informatics and Disease, 9(31), p. 1043-1049, 2010

DOI: 10.1002/humu.21310

Links

Tools

Export citation

Search in Google Scholar

Computational analysis of missense mutations causing Snyder-Robinson Syndrome

Journal article published in 2010 by Zhe Zhang ORCID, Shaolei Teng, Liangjiang Wang, Charles E. Schwartz, Emil Alexov
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Snyder-Robinson syndrome is caused by missense mutations in the spermine sythase gene that encodes a protein (SMS) of 529 amino acids. Here we investigate, in silico, the molecular effect of three missense mutations, c.267G>A (p.G56S), c.496T>G (p.V132G), and c.550T>C (p.I150T) in SMS that were clinically identified to cause the disease. Single-point energy calculations, molecular dynamics simulations, and pKa calculations revealed the effects of these mutations on SMS's stability, flexibility, and interactions. It was predicted that the catalytic residue, Asp276, should be protonated prior binding the substrates. The pKa calculations indicated the p.I150T mutation causes pKa changes with respect to the wild-type SMS, which involve titratable residues interacting with the S-methyl-5'-thioadenosine (MTA) substrate. The p.I150T missense mutation was also found to decrease the stability of the C-terminal domain and to induce structural changes in the vicinity of the MTA binding site. The other two missense mutations, p.G56S and p.V132G, are away from active site and do not perturb its wild-type properties, but affect the stability of both the monomers and the dimer. Specifically, the p.G56S mutation is predicted to greatly reduce the affinity of monomers to form a dimer, and therefore should have a dramatic effect on SMS function because dimerization is essential for SMS activity.