Published in

American Chemical Society, Nano Letters, 3(10), p. 759-764, 2010

DOI: 10.1021/nl902000e

Links

Tools

Export citation

Search in Google Scholar

Cyclic conductance switching in networks of redox-active molecular junctions.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Redox-active dithiolated tetrathiafulvalene derivatives (TTFdT) were inserted in two-dimensional nanoparticle arrays to build interlinked networks of molecular junctions. Upon oxidation of the TTFdT to the dication state, we observed a conductance increase of the networks by up to 1 order of magnitude. Successive oxidation and reduction cycles demonstrated a clear switching behavior of the molecular junction conductance. These results show the potential of interlinked nanoparticle arrays as chemical sensors.