Published in

Wiley Open Access, Journal of Cellular and Molecular Medicine, 3(18), p. 391-395, 2014

DOI: 10.1111/jcmm.12234

Links

Tools

Export citation

Search in Google Scholar

Lactoferrin gene knockdown leads to similar effects to iron chelation in human adipocytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In human and mice adipose tissue, lactoferrin (LTF) has been found to be associated with increased adipogenesis and decreased inflammatory markers. Here, we aimed to investigate the effects of LTF knockdown (KD) in human adipocyte differentiation. In addition, the effects of exogenous LTF administration and iron chelation [using deferoxamine (DFO, 10 μM)] were tested. In both subcutaneous and visceral pre-adipocytes, LTF KD led to decrease significantly adipogenic, lipogenic and insulin signalling-related gene expression and a significant increase in the gene expression of inflammatory mediators. Human lactoferrin (hLf, 1 μM) administration led to recover adipocyte differentiation in LTF KD pre-adipocytes. Interestingly, iron chelation triggered similar effects to LTF KD, decreasing significantly adipogenic gene expressions. Of note, DFO (10 μM) and hLf (1 and 10 μM) co-administration led to a dose-dependent recovery of adipocyte differentiation. These new data reveal that endogenous LTF biosynthesis during human adipocyte differentiation is essential to achieve this process, possibly, modulating adipocyte iron homoeostasis. hLf administration might be a useful therapeutic target in obesity-associated adipose tissue dysfunction.