Published in

American Institute of Physics, Journal of Applied Physics, 20(121), p. 204502

DOI: 10.1063/1.4983780

Links

Tools

Export citation

Search in Google Scholar

Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We propose and validate a sensor for polar liquids that operates in conjunction with terahertz time-domain spectroscopy. The sensor is constructed from an optically thick silicon wafer and a ground plane, separated by a gap into which the liquid is injected. This arrangement represents a Fabry-Pérot interferometer that causes a sharp minimum in the reflection spectrum. Compared to resonance-based sensors, this sensor design can maintain its sharp spectral response when loaded with highly absorbing polar liquids. This overcomes an issue of damped resonance caused by material losses in resonance-based sensors. We report a reflection minimum shift of 8 GHz per percent ethanol in water. The sensor can be readily integrated with a microfluidic channel for real-time fluid monitoring.