Published in

Human Kinetics, Pediatric Exercise Science, 4(29), p. 504-512, 2017

DOI: 10.1123/pes.2017-0042

Links

Tools

Export citation

Search in Google Scholar

Wnt Signaling–Related Osteokines and Transforming Growth Factors Before and After a Single Bout of Plyometric Exercise in Child and Adolescent Females

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study examined resting levels of catabolic and anabolic osteokines related to Wnt signaling and their responses to a single bout of plyometric exercise in child and adolescent females. Fourteen premenarcheal girls [10.5 (1.8) y old] and 12 postmenarcheal adolescent girls [15.0 (1.0) y old] performed a plyometric exercise trial. One resting and 3 postexercise blood samples (5 min, 1 h, and 24 h postexercise) were analyzed for sclerostin, dickkopf-1 (DKK-1), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), and transforming growth factors (TGF-β1, TGF-β2, and TGF-β3). Premenarcheal girls had significantly higher resting sclerostin, TGF-β1, TGF-β2, and TGF-β3 than the postmenarcheal girls, with no significant time effect or group-by-time interaction. DKK-1 was higher in premenarcheal compared with postmenarcheal girls. There was an overall significant DKK-1 decrease from baseline to 1 h postexercise, which remained lower than baseline 24 h postexercise in both groups. There was neither a significant group effect nor group-by-time interaction in OPG, RANKL, and their ratio. RANKL decreased 5 min postexercise compared with baseline and remained significantly lower from baseline 24 h following the exercise. No changes were observed in OPG. OPG/RANKL ratio was significantly elevated compared with resting values 1 h postexercise. In young females, high-impact exercise induces an overall osteogenic effect through a transitory suppression of catabolic osteokines up to 24 h following exercise.