Published in

Trans Tech Publications, Solid State Phenomena, (258), p. 33-36

DOI: 10.4028/www.scientific.net/ssp.258.33

Links

Tools

Export citation

Search in Google Scholar

A First-Principles Study of Phase Transition of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX) under Static Compression

Journal article published in 2016 by Lei Zhang ORCID, Sheng Li Jiang, Jun Chen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The issue of HMX phase transition under hydrostatic compression is not clear and experiments show conflicting results. Effective solution via first-principles simulation is challenged by difficulty of accurate prediction of Van der Waals interaction, which exists ubiquitously and is crucial for determining the structure of molecules and condensed matter. We have contributed to this by constructing a set of pseudopotentials and pseudoatomic orbital basis, specialized for molecular systems with C/H/N/O elements. The reliability of the method is verified from the interaction energies of 45 complexes (comparing to the results of coupled cluster with singles and doubles (Triple) (CCSD)(T)) and the crystalline structures of 7 typical explosives (comparing to experiments). Using this method, we complete the phase diagram of HMX under static compression up to 50 GPa. We make it clear that no β→δ/ε→δ phase transition occurs at 27 GPa, which has long been a hot debate in experiments. A possible γ→β phase transition is found at around 2.10 GPa in the environment of vapour. We have also predicted the equation of states for α-, δ-, and γ-HMX, which are experimentally absent.