Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Physics of Plasmas, 5(25), p. 054502

DOI: 10.1063/1.5025188

Links

Tools

Export citation

Search in Google Scholar

Visualizing deceleration-phase instabilities in inertial confinement fusion implosions using an “enhanced self-emission” technique at the National Ignition Facility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

High-mode perturbations and low-mode asymmetries were measured in the deceleration phase of indirectly driven, deuterium gas filled inertial confinement fusion capsule implosions at convergence ratios of 10 to 15, using a new “enhanced emission” technique at the National Ignition Facility [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In these experiments, a high spatial resolution Kirkpatrick-Baez microscope was used to image the x-ray emission from the inner surface of a high-density-carbon capsule's shell. The use of a high atomic number dopant in the shell enabled time-resolved observations of shell perturbations penetrating into the hot spot. This allowed the effects of the perturbations and asymmetries on degrading neutron yield to be directly measured. In particular, mix induced radiation losses of ∼400 J from the hot spot resulted in a neutron yield reduction of a factor of ∼2. In a subsequent experiment with a significantly increased level of short-mode initial perturbations, shown through the enhanced imaging technique to be highly organized radially, the neutron yield dropped an additional factor of ∼2.