Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 9(184), p. 4880-4888, 2010

DOI: 10.4049/jimmunol.0901767

Links

Tools

Export citation

Search in Google Scholar

IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Th17 is a newly identified lineage of effector T cells involved in autoimmunity and immune responses to pathogens. We demonstrate in this study the pathogenic role of IL-17-producing CD4(+) T lymphocytes in allergic contact dermatitis (ACD) to skin-applied chemicals. IL-17(+) T cells infiltrate ACD reactions and predominantly distribute at the site of heavy spongiosis. Skin IL-17(+) T cells were functionally and phenotypically heterogeneous: although pure Th17 prevailed in ACD skin, hapten responsiveness was restricted to Th1/IL-17 (IFN-gamma(+)IL-17(+)) and Th0/IL-17 (IFN-gamma(+)IL-17(+)IL-4(+)) fractions, and to lesser extent Th2/IL-17 cells. In the IFN-gamma-dominated ACD environment, IL-17-releasing T cells affect immune function of keratinocytes by promoting CXCL8, IL-6, and HBD-2 production. In addition, compared with Th1, supernatants from Th1/IL-17 T cells were much more efficient in inducing ICAM-1 expression on keratinocytes and keratinocyte-T cell adhesiveness in vitro. As a consequence, exposure to combined IFN-gamma and IL-17 rendered keratinocytes susceptible to ICAM-1-dependent Ag nonspecific T cell killing. Thus, IL-17 efficiently amplifies the allergic reaction by rendering virtually all of the T lymphocytes recruited at the site of skin inflammation capable to directly contribute to tissue damage.