EDP Sciences, Astronomy & Astrophysics, (620), p. A17, 2018
DOI: 10.1051/0004-6361/201832970
Full text: Unavailable
The XMM-XXL Survey spans two fields of 25 deg2 each observed for more than 6 Ms with XMM, which provided a sample of tens of thousands of point sources with a flux limit of ~2.2 × 10−15 and ~1.4 × 10−14 erg s−1 cm2, corresponding to 50% of the area curve, in the soft band (0.5–2 keV) and hard band (2–10 keV), respectively. In this paper we present the spatial clustering properties of ~3100 and ~1900 X-ray active galactic nuclei (AGNs) in the soft and hard bands, respectively, which have been spectroscopically observed with the AAOmega facility. This sample is 90% redshift complete down to an optical magnitude limit of r ≲ 21.8. The sources span the redshift interval 0 < z < 5.2, although in the current analysis we limit our samples to z ≤ 3, with corresponding sample median values of z̅ ≃ 0.96 and 0.79 for the soft band and hard band, respectively. We employ the projected two-point correlation function to infer the spatial clustering and find a correlation length r0 = 7.0(±0.34) and 6.42(±0.42) h−1 Mpc, respectively, for the soft- and hard-band detected sources with a slope for both cases of γ = 1.44(±0.1). The power-law clustering was detected within comoving separations of 1 and ~25 h−1 Mpc. These results, as well as those derived in two separate redshift ranges, provide bias factors of the corresponding AGN host dark matter halos that are consistent with a halo mass of log10[Mh∕(h−1M⊙)] = 13.04 ± 0.06, confirming the results of most recent studies based on smaller X-ray AGN samples.