Published in

American Chemical Society, Macromolecules, 20(44), p. 8154-8160, 2011

DOI: 10.1021/ma201365p

Links

Tools

Export citation

Search in Google Scholar

Tunable Encapsulation of Proteins within Charged Microgels

Journal article published in 2011 by Michael H. Smith, L. Andrew Lyon ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The binding of cytochrome c to pH and thermoresponsive colloidal hydrogels was investigated using multiangle light scattering, measuring loading through changes in particle molar mass and root mean square radius. Loosely cross-linked microgels [composed of a random copolymer of N-isopropylacrylamide (NIPAm) and acrylic acid (AAc)] demonstrated a high loading capacity for protein. Encapsulation was dependent on both the charge characteristics of the network and the salinity of the medium. Under favorable binding conditions (neutral pH, low ionic strength), microgels containing the highest studied charge density (30 mol% AAc) were capable of encapsulating greater than 9.7 × 10(5) cytochrome c molecules per particle. Binding resulted in the formation of a polymer-protein complex and condensation of the polymer. Anionic microgels demonstrated a change in density ~20-fold in the presence of oppositely charged proteins. These studies of cytochrome c encapsulation represent a significant step towards direct measurement of encapsulation efficiency in complex media as we pursue responsive nanogels and microgels for the delivery of macromolecular therapeutic agents.