Published in

De Gruyter, Pure and Applied Chemistry, 9(89), p. 1305-1320, 2017

DOI: 10.1515/pac-2017-0201

Links

Tools

Export citation

Search in Google Scholar

Synthesis and effects of flavonoid structure variation on amyloid-β aggregation

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Dietary flavonoids and synthetic derivatives have a well-known potential for biomedical applications. In this perspective, we report herein new methodologies to access chrysin and 5,7-dihydroxychromone, and these structures were combined with those of naturally occurring quercetin, luteolin, (+)-dihydroquercetin and apigenin to assemble a set of polyphenols with structure variations for in vitro testing over the aggregation of Alzheimer’s disease (AD) amyloid peptide Aβ1−42. Using thioflavin-T (ThT) monitored kinetics and subsequent mechanistic analysis by curve fitting, we show that catechol-type flavonoids reduce Aβ1−42 fibril content by 30% at molar ratios over 10. Without affecting secondary nucleation, these compounds accelerate primary nucleation events responsible for early primary oligomer formation, putatively redirecting the latter into off-pathway aggregates. Atomic force microscopy (AFM) imaging of reaction end-points allowed a comprehensive topographical analysis of amyloid aggregate populations formed in the presence of each compound. Formation of Aβ1−42 small oligomers, regarded as the most toxic amyloid structures, seems to be limited by flavonoids with a C2 phenyl group, while flavonol 3-OH is not a beneficial structural feature. Overall, the diversity of structural variations within flavonoids opens avenues for their development as chemical tools in the treatment of AD by tackling the formation and distribution of neurotoxic oligomers species.